広島大学シラバス

シラバスTOPへ
English
年度 2024年度 開講部局 総合科学部総合科学科
講義コード ANM22001 科目区分 専門教育科目
授業科目名 数理解析
授業科目名
(フリガナ)
スウリカイセキ
英文授業科目名 Mathematical Analysis
担当教員名 水町 徹
担当教員名
(フリガナ)
ミズマチ テツ
開講キャンパス 東広島 開設期 3年次生   前期   1ターム
曜日・時限・講義室 (1T) 金1-4:総C808
授業の方法 講義 授業の方法
【詳細情報】
 
講義中心、板書多用 
単位 2.0 週時間   使用言語 B : 日本語・英語
学習の段階 3 : 中級レベル
学問分野(分野) 25 : 理工学
学問分野(分科) 01 : 数学・統計学
対象学生
授業のキーワード フーリエ級数とフーリエ変換、ラプラス変換、偏微分方程式 
教職専門科目   教科専門科目  
プログラムの中での
この授業科目の位置づけ
(学部生対象科目のみ)
 
到達度評価
の評価項目
(学部生対象科目のみ)
総合科学プログラム
(知識・理解)
・当該の個別学問体系の重要性と特性、基本となる理論的枠組みへの知識・理解
(能力・技能)
・課題の考察のために必要な理論・方法を特定する能力・技能 
授業の目標・概要等 数理科学に現れる種々の現象を解析学が如何に分析するかについて講義をする。
フーリエ解析、ラプラス変換などの方法を解説し、これらを用いて常微分方程式や熱方程式、波動方程式といった偏微分方程式の解析を行う。 
授業計画 第1回 ラプラス変換 (定義と計算例)
第2回 ラプラス変換 (常微分方程式を解く)
第3回 単振動の方程式,弦の振動の方程式
第4回   フーリエ級数の定義と例
第5回 級数の収束 (Abelの級数変形)
第6回   Abel総和法とLaplace方程式の境界値問題
第7回 Parsevalの等式
第8回 Hilbert空間
第9回.  熱方程式の初期境界値問題とFourier級数
第10.    波動方程式の初期境界値問題とFourier級数
第11回 Fourier変換の定義と例(その1)
第12回 Fourier変換の定義と例(その2)
第13回 Fourier変換の性質,急減少関数
第14回 Fourier変換の反転公式,Plancherelの定理
第15回 熱方程式のCauchy問題

留学生が受講する場合は,板書は英語で行う. 
教科書・参考書等 Fourier Analysis An introduction by Elias M. Stein and Rami Shakarachi
(Princeton Lectures in Analysis, I. Princeton University Press)
日本語訳:フーリエ解析入門 (プリンストン解析学講義) 出版社 : 日本評論社 (2007/3/1)
ISBN-10 : 4535608911 ISBN-13 : 978-4535608917 
授業で使用する
メディア・機器等
 
【詳細情報】 テキスト,配付資料,音声教材,映像(ビデオ/PC/その他画像資料) 
授業で取り入れる
学習手法
 
予習・復習への
アドバイス
この授業では,2年次までに習った微分積分や複素関数論,常微分方程式についての基本的な事柄が
フーリエ級数やフーリエ変換について説明する際に出てきます.
毎回必要に応じて復習をすることで,今までに習ったことが,実際にどのように使われるのかを
学ぶことができます. 
履修上の注意
受講条件等
 
成績評価の基準等 各項目の理解度および計算に関する習熟度に関するレポートまたは試験を課します。 
実務経験  
実務経験の概要と
それに基づく授業内容
 
メッセージ  
その他   
すべての授業科目において,授業改善アンケートを実施していますので,回答に協力してください。
回答に対しては教員からコメントを入力しており,今後の改善につなげていきます。 
シラバスTOPへ