広島大学シラバス

シラバスTOPへ
English
年度 2022年度 開講部局 先進理工系科学研究科博士課程前期先進理工系科学専攻数学プログラム
講義コード WSA33000 科目区分 専門的教育科目
授業科目名 多様幾何特論A
授業科目名
(フリガナ)
タヨウキカトクロンエー
英文授業科目名 Topics in Geometry A
担当教員名 藤森 祥一,古宇田 悠哉,奥田 隆幸
担当教員名
(フリガナ)
フジモリ ショウイチ,コウダ ユウヤ,オクダ タカユキ
開講キャンパス 東広島 開設期 1年次生   前期   2ターム
曜日・時限・講義室 (2T) 月3-4,木3-4:理E208
授業の方法 講義 授業の方法
【詳細情報】
 
講義中心、板書多用 
単位 2.0 週時間   使用言語 B : 日本語・英語
学習の段階 5 : 大学院基礎的レベル
学問分野(分野) 25 : 理工学
学問分野(分科) 01 : 数学・統計学
対象学生
授業のキーワード 極小超曲面, 極小曲面, 変分法, 共形はめ込み, 表現公式 
教職専門科目   教科専門科目  
プログラムの中での
この授業科目の位置づけ
 
到達度評価
の評価項目
 
授業の目標・概要等 Euclid空間の曲面で, その平均曲率が恒等的に消えているものは極小曲面と呼ばれ, 石鹸膜の数学的モデルとして古くから研究が行われてきた.
本講義では超曲面の基本的な局所理論から始め, 平均曲率が消えている曲面が面積極小であること, 極小曲面を構成する表現公式などについて講義する.
極小 (超) 曲面の幾何学的意味を理解すること, および複素数を用いた曲面の表示を理解することを目的とする.  
授業計画 第1回:超曲面論の局所理論
第2回:微分形式とStokesの定理
第3回:超曲面の体積
第4回:体積の第1変分公式
第5回:体積の第1変分と超曲面の平均曲率
第6回:第2変分公式
第7回:Jacobi作用素
第8回:極小超曲面の安定性
第9回:グラフ超曲面, 極小超曲面の方程式
第10回:Berstein問題
第11回:極小曲面の実解析性
第12回:共形はめ込み
第13回:Ricciの定理
第14回:Gauss写像
第15回:表現公式

講義中にレポートを課す。 
教科書・参考書等 教科書:
川上 裕, 藤森 祥一「極小曲面論入門 --その幾何学的性質を探る--」
SGCライブラリ 147 (サイエンス社) 2019年. 
授業で使用する
メディア・機器等
 
【詳細情報】 黒板 
授業で取り入れる
学習手法
 
予習・復習への
アドバイス
全ての回で共通することとして、講義中に細かい計算や証明の細部は紹介しないので、
各自で計算や議論を補完する、または誰かと議論するなどして積極的に考えることが望ましい。
講義担当者への質問ももちろん歓迎する。 
履修上の注意
受講条件等
 
成績評価の基準等 レポートの評点。 
実務経験  
実務経験の概要と
それに基づく授業内容
 
メッセージ  
その他   
すべての授業科目において,授業改善アンケートを実施していますので,回答に協力してください。
回答に対しては教員からコメントを入力しており,今後の改善につなげていきます。 
シラバスTOPへ