広島大学シラバス

シラバスTOPへ
English
年度 2022年度 開講部局 総合科学部総合科学科
講義コード ANM27001 科目区分 専門教育科目
授業科目名 計算科学
授業科目名
(フリガナ)
ケイサンカガク
英文授業科目名 Computational Science
担当教員名 稲垣 知宏,村上 祐子
担当教員名
(フリガナ)
イナガキ トモヒロ,ムラカミ ユウコ
開講キャンパス 東広島 開設期 2年次生   後期   4ターム
曜日・時限・講義室 (4T) 月1-4:総K206
授業の方法 講義・演習 授業の方法
【詳細情報】
 
講義と演習 
単位 2.0 週時間   使用言語 B : 日本語・英語
学習の段階 3 : 中級レベル
学問分野(分野) 25 : 理工学
学問分野(分科) 02 : 情報科学
対象学生
授業のキーワード モデル化、計算機シミュレーション、数値計算 
教職専門科目   教科専門科目  
プログラムの中での
この授業科目の位置づけ
数値計算を通じて数理科学・情報科学上の様々な課題についで幅広く学ぶ。 
到達度評価
の評価項目
総合科学プログラム
(知識・理解)
・当該の個別学問体系の重要性と特性、基本となる理論的枠組みへの知識・理解
(能力・技能)
・課題の考察のために必要な理論・方法を特定する能力・技能 
授業の目標・概要等 計算機シミュレーションによる問題解決について概観し、計算科学の基礎、数値計算に用いられる基本的なアルゴリズムについて講義する。合わせてプログラミング実習を行うことで、現象の数値計算による理解、計算結果の解析法について学ぶ。プログラミング経験はなくてもよい。

 
授業計画 1 現象のモデル化と数値解析
2 数値計算とプログラム
3 計算機シミュレーションによる問題解決
4 非線形現象
5 擬似乱数
6 モンテカルロ法
7 確率論的シミュレーション
8 確率論的シミュレーションによる現象解析
9 数値計算とアルゴリズム
10 連立方程式の解法
11 回帰分析による予測
12 最小2乗法
13 モデルの予測
14 リッジ回帰
15 まとめ

各テーマについてプログラムを作成し提出する。

学生の要望により、講義内容・順序を変更する場合もある。 
教科書・参考書等 参考文献を授業中に紹介する。 
授業で使用する
メディア・機器等
 
【詳細情報】 必携PC 
授業で取り入れる
学習手法
 
予習・復習への
アドバイス
授業中に作成したプログラムの改良、実行結果の確認を常に行ってほしい。 
履修上の注意
受講条件等
1年次の線形代数学、微分・積分の基礎知識を前提として授業を行う。 
成績評価の基準等 レポート60点、最終課題40点の計100点で成績をつける。
 
実務経験  
実務経験の概要と
それに基づく授業内容
 
メッセージ さまざまな現象の数値シミュレーションに関して、モデル化、シミュレーションの種類、要素技術について講義を聞くだけでなく、具体的なプログラミングを行うことで身に付けよう。 
その他   
すべての授業科目において,授業改善アンケートを実施していますので,回答に協力してください。
回答に対しては教員からコメントを入力しており,今後の改善につなげていきます。 
シラバスTOPへ