広島大学シラバス

シラバスTOPへ
English
年度 2017年度 開講部局 工学部
講義コード K0201040 科目区分 専門教育科目
授業科目名 応用数学I
授業科目名
(フリガナ)
オウヨウスウガク 1
英文授業科目名 Applied Mathematics I
担当教員名 川下 和日子
担当教員名
(フリガナ)
カワシタ ワカコ
開講キャンパス 東広島 開設期 1年次生   後期   セメスター(後期)
曜日・時限・講義室 (後) 水5-6:工112,工220
授業の方法 講義 授業の方法
【詳細情報】
講義中心、板書多用 
単位 2 週時間   使用言語 J : 日本語
学習の段階 1 : 入門レベル
学問分野(分野) 25 : 理工学
学問分野(分科) 25 : 数学・統計学
対象学生 第四類 平成29年度入学生
授業のキーワード 常微分方程式,初期値問題,変数分離形,線形微分方程式,微分演算子,べき級数解,数値解法 
教職専門科目   教科専門科目  
プログラムの中での
この授業科目の位置づけ
・ この科目は第二類の専門基礎科目に属し,第二類各主専攻プログラムのプログラム
到達目標 「(B)電気・電子・システム・情報の各分野において共通して必要とされ
る基礎知識の習得」,および 「(C)電気・電子・システム・情報の各分野における
専門知識とこれらを応用する能力の習得」に対応している.
・ この授業の前提となる科目: 微分学
・ この授業と併せて履修することが望ましい科目: 積分学,線形代数学I、線形代数学II

 
到達度評価
の評価項目
機械システム工学系プログラム
(能力・技能)
・機械システム工学の基礎の確実な習得と応用力の養成

電気・電子・システム・情報系プログラム
(能力・技能)
・電気,電子,システム,情報分野の専門家として必要とされる数学的手法。

応用化学プログラム
(知識・理解)
・教養教育と専門教育における幅広い基礎知識および化学に関する専門基礎知識

化学工学プログラム
(能力・技能)
・化学および化学工学の基礎の確実な習得と応用力の養成(C1)工学基礎

生物工学プログラム
(知識・理解)
・生物工学及び生命科学の基礎および応用知識の修得(到達目標C・講義科目)

社会基盤環境工学プログラム
(能力・技能)
・問題解析力

輸送機器環境工学プログラム
(知識・理解)
・数学力学系科目 エンジニア・研究者として必要な数学力学系の基礎知識の理解と習得
(能力・技能)
・数学力学系科目 数学力学系科目の基礎知識を用いた,問題の構成能力と解析能力

建築プログラム
(知識・理解)
・工学的基礎知識の習得(・数学,物理学,情報技術の基礎的内容を説明することができる。・数学,物理学,情報技術の基礎的内容を建築に応用することが出来る。)に関する理解 
授業の目標・概要等 基本的な常微分方程式の解法を習得し,微分方程式の応用に必要な数学的基礎を身につけること.具体的には:

(1) 微分方程式に関する基本的な術語や概念を理解すること.
(2) 1階線形微分方程式の解法を身につけること.
(3) 変数分離形の微分方程式の解法を習得すること.
(4) 線形微分方程式の解法の一般的な原理を理解すること.
(5) 2階定数係数線形微分方程が解けること.
(6) 高階定数係数線形微分方程式と1階連立微分方程式の関係について知ること.
(7) 微分方程式のべき級数解を数学的に正しく扱うこと.
(8) 微分方程式を計算機で数値的に解くための基礎知識を身につけること.

なお,「知識・理解」,「能力・技能」の評価項目は,下記のとおりである。
・電気・電子・システム・情報の各分野の専門家として必要とされる数学的手法 
授業計画 第1回 微分方程式:基本概念,例
第2回 1階微分方程式:変数分離形,線形微分方程式,完全形,応用,解の存在と一意性 [1]
第3回 1階微分方程式:変数分離形,線形微分方程式,完全形,応用,解の存在と一意性 [2]
第4回 1階微分方程式:変数分離形,線形微分方程式,完全形,応用,解の存在と一意性 [3]
第5回 1階微分方程式:変数分離形,線形微分方程式,完全形,応用,解の存在と一意性 [4]
第6回 2階線形微分方程式:ロンスキー行列式,基本解,特性方程式, 特殊解の求め方,解の変化の様子 [1]
第7回 2階線形微分方程式:ロンスキー行列式,基本解,特性方程式, 特殊解の求め方,解の変化の様子 [2]
第8回 2階線形微分方程式:ロンスキー行列式,基本解,特性方程式, 特殊解の求め方,解の変化の様子 [3]
第9回 2階線形微分方程式:ロンスキー行列式,基本解,特性方程式, 特殊解の求め方,解の変化の様子 [4]
第10回 2階線形微分方程式:ロンスキー行列式,基本解,特性方程式, 特殊解の求め方,解の変化の様子 [5]
第11回 連立線形微分方程式 [1]
第12回 連立線形微分方程式 [2]
第13回 高階線形微分方程式
第14回 べき級数による微分方程式の解法 [1]
第15回 べき級数による微分方程式の解法 [2]

期末試験実施 
教科書・参考書等 教科書:水田義弘 著「大学で学ぶやさしい微分方程式」,サイエンス社
参考書:寺田文行•坂田泩 共著「新版演習微分方程式」,サイエンス社 
授業で使用する
メディア・機器等
教科書, 配布資料 
予習・復習への
アドバイス
講義中に課題として出される演習問題を自力で解いてみること. 
履修上の注意
受講条件等
 
成績評価の基準等 レポートと期末試験の総合点で評価します.  
メッセージ  
その他   
すべての授業科目において,授業改善アンケートを実施していますので,回答に協力してください。
回答に対しては教員からコメントを入力しており,今後の改善につなげていきます。 
シラバスTOPへ